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The existence is investigated of the solution of an optimal control problem
with a performance index specified as an integral quadratic form of coordin-
ates and coatrols of a plant described by a system of linear differential equat-
ions with lagging argument. A connection is established between the given
problem and optimal problems of a special kind, for which the solution exist-
ence conditions have been investigated in detail,

1, We consider the problem of minimizing the functional
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relative to the plant's equations of motion
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Here Z (t) = {21, ..., Zm} and u (}) = {uy, ..., Uy} are the state vector and
the control vector, respectively @, (f) and @, () are initial functions for which
a continuous solution of Eq, (1.2) exists +; and 0; are the time lags in the coord-
inates of the state vector (I deviations of the argument) and of the controls (r devia-
tions of the argument), respectively; A;, B;and A® = | a$} || are constant mat-
rices; the superscript ¢ denotes transposition. Equations of the type given character-
ize a wide class of engineering processes, of economic systems, etc.
From the results in [1 — 6] it follows that if a solution of the problem given, as a
problem of analytic design { 1 — 6], exists, thea it has the form
[ 0
u(t)=Kzt)+ § Ka@®z(t +HdE+ Se o) u(t + 0)do
T
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K= — ( A(%))-l ( Bo‘Wo + But (0) + A(l)‘)
K1(®) = — (A% (Bo'Boa §) + Poa (5, 0))
K3 (0) = — (A®) 2 (Bo'Bu (6) + Pur (0, 9))
Here the matrices W, = Wi, Boi(E) and Pex (€, 6) = Poi(0, &) (i =1,2; k=
1,2,3) satisfy the system of equations presented in [6].
Let us now consider the probkem of optimizing a functional of form (1. 1) relative
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the plant's equations of motion that are approximations of (1, 2), as follows from [6);

xnn«(t) = Aoznn(t) + Z Aize (1) + Bounns(t) + 2 Bz ( (1.4)
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2o, () = 2vex T (B), 20, (2) = Zea0,” (8)

%i-1 Xi-1
2O =3 § 2®d0, 20 =5 { u®ao0 (15

%= —IT,NY, ;= —i6, (N¥)?

When minimizing functional (1. 1) relative to (1.4) we use Znyn- (t), uxn~ () and
Inne instead of z (t), u (f) and I, respectively; z; (f) and z} (¢) are vectors
of dimension M and 7, approximately characterizing the effect of the time lags in
the coordinates of the state vector and controls,
Existence conditions for the solution of optimization problems of this class have
been given, for instance, in [7 — 10]; the optimal solution has the form

N
uNN.(t) =K$N~*(t)+—;vLZK1[1—i] Z,(t)+ (1.6)
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Here K, I[j] and K, [j] are matrices of dimensions nXm and nXn. The
optimal controls (1.3) and (1. 6) are chosen from the class of admissible controls u(t)

& L, (0, o). When (1.3) and (1, 6) are fulfilled Egs. (1,2) and (1. 4) have contin-
uous solutions Z (f) & L, (0, o0) and zyn+ (t) € Ly (0, o0) (z (t) satisfies(1.2)
almost everywhere), The following theorem establishes the relation between the exist-
ence conditions for the solutions of the optimal problems of minimizing the quadratic
functional (1, 1) relative to Eqgs, (1.2) and (1,4), respectively,

Theorem., Supposethatwe can find numbers N, and Ny such that the opt-
imal solution uxn+ (£), znn- (£) of problems of form (1,1), (1.4) — (1. 6) exists(does
not exist) forall N > N, and N* > Ny . Then the optimal solution u (2), Z (£)
of control (1. 1), (1,2) exists (doec not exist), and in case the optimal solution exists
we can find N,'(8) and No (8) such that

S i (t) — unne(8) [P dE < 8, S l2(t) — annr) 2dz <o 27

[ — Inne] < Kody Ko = maxla.,s)l

foral N > Ngoand N* > Ny. Here the symbol || - ||> denotes the square of
the Euclidean norm of the corresponding vector.

In what follows system (1. 2), (1.3) and, respectively, the minimization problem
(1.1),(1.2)are called original,while system (1, 4)—(1. 6)and the minimization problem
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(1.1), (1.4) are called approximate,

We remark that the system (1.2), (1. 3) of linear equations with lagging argument
is treated here as a limit system relative to (1.4) — (1.6). We assume that Eq, (1.3)
has been obtained formally on the basis of Bellinan's functional equation and that the
control systems satisfied by the matrices W,, By (§) and Py(E, o) (i = 1,2;

k = 1,2, 3) is approximated by the difference scheme following from the algebraic
Riccati equation characterizing the approximate optimal probiems (1. 1), (1. 4) (for
example, see [6,10]). while Ky [1 — i] and K, [1 — j] are first-order approximat-
ions of matrices Ky (§) and K, (0}, respectively, in the nodes — TN~ and

0 (N*) e, —igNALES — (i —1) uN? and — jO, (N*)-1
o< --1)(i — 1) 8, (V*), Ky(§) = K lil + o (N and &, (0) = K, [j] +
o (N*-

( Lemma 1. Let u(t), (f) and unn- (t), Tyn+(2) be asymptotically stable
solutions of the original problem (1.2), (1.3) and of the approximate problem (1. 4),
(1.6), respectively, and let J and Jyy« be the values of functional (1. 1) under the
values indicated. Then for every atbitrarily small 8 > 0 there exists numbers. ¥,

(8) and Ny (8) for which inequalities (1.7) are valid,

We remark that analogously to [11 — 14] we can establish the proximity of the
solutions of the original system (1. 2) of equations with 1a gfmg argument and of the
approximate systems (1.4) with N > N, and N* > Ny for an arbitrary finite inter-
val [0, Tl, i.e., for any arbitrarily small §, and for an arbitrary bounded domain
of initial conditions of system (1. 2), as well as for a bounded norm of u (t) e L, (0,

60), we can find N, (8;) and N§ (8;) such that || 2 (§) — zwws (2) llLe. 7o <

1

Expressions permitting a direct setting up of trajectories z (f) and zyns (£) foll-
ow from (1,3) and (1. 6) under a substitution of the corresponding values of the coordin-
ates of the original and the approximate plants, determined by solving Eqs. (1, 2) and
(1.4) relative to z (!) and zyne (t). The difference e, (t)o= u (t) — unn- (1)
is estimated successively on the two intervals [0, T,] and [T, o). By virtue of
the asymptotic stability of the systems the integral square estimate of ¢, () on the
interval [T, o0) can be made as small as desired by means of choosing I'o. Let
us estimate the solution e, (¢) on the interval [0, T,] by investigating the equation
for e,(t} on the interval [-—8, T,], 6 = max {8,, 7;}, as a Volterra intergral eq-~
uation of the second kind, Because of the square summability of this equation's kernel
and because its free term tends to zero uniformly in £ < T’y as V and N* tend to
infinity [12,15], the smaliness of [ €,(¢) ||L.o, T,) and, consequently, the fulfilment
of the first of conditions (1.7) follow from the properties of the solution of the Volterra
equation, The estimate for the difference €. (t) = z (f) — Zwn» (t) is derived an-
alogously. The resuiting last inequality in (1, 7) follows from the preceding two.

Lemma 2. Ifsystem(1.2), (1, 3) is asymptotically stable, for the existence
of optimal control (1. 3) it is necessary and sufficient that the matrices Wy = W,
Bog(g), i= 1 2 and Pok (§1 G) e POJ(‘ (U? g); k= 1 2 3 samfymg a SyQt‘
em of Riccati equations exist [6].

The proof is analogous to that in {1, 2]

2, The proof of the theorem stated in Sect, 1 is based on the investigation of the
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asymptotic stability (instability) of system (1.2), (1.3). We reckon that the case of
instability of the system encompasses the case of nonasymptotic stability, In the case
of asymptotic stability the proximity (in the sense of (1. 7)) of the solutions of equat-
ion systems (1.2), (1.3) and (1.4), (1, 6) follows from Lemma 1, If we allow for the
fact that u(Z) has been written in form (1.3) on the basis of Bellman's functional eq-
uation, then from Lemma 2 it follows that the given & (f) is the optimal control.

In the case of instability of system {1.2), (1. 3) functional (1. 1} with u (£} in form
(1.3) is unbounded, i.e., the optimal solution is absent, Indeed, by virtue of the
instability of system (1,2), (1. 3) the inequality [z (tx) | * > 26, > 0 is fulfilled for
a denumerable set of #; , Using(1,2), (1.3) and the expression = (tx-+ &) —z (1)) =

ex’ (t;),  we select the size of the interval (f; — ey, £; -+ ¢,) on which |z (¢) |*
> 8, with the aid of the relation
0< =gz (t )P Me,} ;fgx Jzr(P<d M0
k

If the derivatives z° (z;) are bounded, then g,<¢& >0 and, consequently, the inte-
gral 1> 3 26,8
¥

diverges. If lim; ,; lz(ti) I? = oo for some of the points of subsequence ¢, , then
according to the relation cited lim,_,; &x = 0, whereas,lim, ., Meg |z (t) |2 > &,
Then the integral

ety 5
oln, ) iorsslmlere>ln g

is unbounded,

System (1, 2), (1,3) is investigated by comparison with the approximate systems
(1.4), (1.6), and the instability of approximate system indjcates the absence of an
optimal solution fo the corresponding approximate problem, Let us set up the traject-
ories Zp () = {Zwn+ (1), 21 (2), . . ., 2k« (1)} of the optimal approximate system
and x () of system (1.2), (1, 3). me (1. 2) ~ (1, 6) follow the inequalities

l2 () = zane 11 < 2 4l 5 le@—m)—2z @I+ (2D

BBl [ hu(0—6) = z0* @} do
S OGO+ Nz Su®<Culd) +uwnt)]
It — 8;) — 25, () | << Gu () + 2nBipu (&) / V' N* (2.2)
(=) — 2, (O < Ge () + 2mriv 8}/ VN

Here
Sy (t) = max Ty @l to<ESH [y =max]y:@)]
¥y ={n @ . . w®) G()= max |z (&) — znn(®) |
Gy (t) = max fu@—uvn@®f, L<ESE 1>t
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Inequalities (2.2) have been written under the assumptions & < ¢, || zwwe (B) ]| <<
Vx () and || uhwe (B) | < yu (£), and from Eq, (1.6) it follows that if || Zins
(8) | < ¥« (2), then a constant M exists for which the relation

Vu (8) < Mrye (2)
is fulfilled. Here and further the constants M; >> () in the estimates of the inequal-
ities are used without being determined in detail,
According to Eq. (1.2) we have
3 to+ 0, |2 (0) | < MaSs () + MySu () < M, G (8) +  (2.3)
MyGu () + My (2 (@) || + Ju () ), 8 = max (v, 6,)

Having substituted the appropriate quantities into expression (2. 1), we present the

latter as
t t

G:(<M, § G.®as + M, { 6. @k + (2.9

tl t‘
t

(S5 55) 0@ +in@na

From expressions (1, 3) and (1. 6) follows

(e — unne(d) | < I K@) ~ zyns) |+ 1 Qall 4 1 Qall +oN .Y D)
N *i-p
Q: = ..};. Ki1— e}(—;"-’;— S x(t-s—%)d%-—ze(t))
=1 5
N# Hiag
9 N* *
= s K1 —il(5 \ u(t+0)do—z*()
Q: N - 2 ( 8, §i ' )
N_ = min (A'Y: N*)
Using the relations
Hiey Hi-y
N
u—gl- S (2(t + &) — Tnalt + E))dE+ T § znnu(t + §) d§ — z(t) “<
:—g—xg__l . it
N 2ma, (‘—'1)“;< (b
we reduce expression {2, 5) to ,
Go (£) < MyGa (1) -+ Mo § G (B) B8+ 0 (V) (2.6)
$

From inequalities (2.4) and (2. 5) and the lemma in [11} it follows that when || 2 (¢) ||
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Gau (t) = G () + Gy (£) < (MpaN= + MygN*y (J1 + My Jy) +
o(N_.Y)
t

tg
= tS Wz@® I+ 1e@®nde T.=§Saz@1+ 120D x

iz 1y

exp [((Mu N~ + M ,N*") (¢ — E) dodE

Taking into account that the solution of a system of linear differential equations with
constant coefficients, describing a approximate optimal system, is majorized by a
damped exponential function, we have

awwe ()] + [ uwe @) ) < adrest-9, >4, 30
| Zo (20} || << 81

Let the initial conditions of the system (1, 2) and (1. 3) are such that
SIS +0, S+ S, ()<<, 8/ My

Let us determine the initial conditions z, (t) at instant Z, -+ 6 from the corres-
ponding values of z (f) and u (f) according to(1.5). Let?, + T = a-ln (4 k)
and let IV_be so large that

Ot +604+ T, M, T)/VN <Y,
Then the inequalities

LT OSEISE+O0+T, 2@+ lu@) ] <Go @)+
I zwne @) | + || uwn- () | < 8
b F T <t +04+T, lz@+u@<8/4

are filfilled to within quantities of the order of smallness o0 (V_!) . Now assuming
to + 6 + T asthe initial instant ¢;, we determine the initial values =z, ()
from the corresponding values of & (f) and u (f). Analogously we obtain

ty+ 0+ Tt + 0+ 27, H-’Ct)ll-l-ll u() ) <<d/4+
m(t)<5/2
ty+ 2T <t<to+0-+2T, [z@|+lu@|<8/8

Repeating for T more steps, we find

b FET S +8F BT, u@ i+ x| <2416
k=12,
Thus, for an arbitrary bounded domain of initial conditions of system (1, 2}, (1.3) we
can find a time interval kT during which the trajectories of the coordinates and of
the controls of the system belong to an arbitrarily small neighborhood of the origin(of
the order o (N_')), which attests to the asymptotic stability of the given system.

An insignificant change in the proof scheme presented (see [11], for instance) shows
that if system (1. 2), (1.3) is asymptotically stable, then we can find Ny and No*
such that the approximate systems (1.4), (1. 6) are asymptotically stable whenN > N,
and N* > N,*, Finally, the instability of system (1, 2), (1. 3) when the approximate
systems (1.4), (1. 6) are unstable can be proved by contradiction,
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In conclusion we mention that the results established above serve as a foundation
for the possibility of investigating the considered class of optimal control problems
for plants with time lags in the control and in the coordinates on the basis of the invest-
igation of optimal control problems for linear dynamic plants without time lags, where
the special form of the matrices of these plants' dynamics equations permits us to con-
fine ourselves to finite, frequently small, values of ¥ and ~*, This question is tou-
ched upon in more detail in [6] wherein the calculations are carried out for 2 number
of concrete time-lag control systems. Also considered in [6] is a suboptimial control
problem when plant (1,2) is controlled by regulator (1. 6) whose parameters are deter-
mined by solving an approximate optimal problem. We take note also of {16] in which
a method is considered for investigating a class of optimal control problems for distribut-
ed-parameter plants on the basis of an investigation of a sequence of finite~dimension-
al optimal problems.
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